Extractors for Jacobian of Hyperelliptic Curves of Genus 2 in Odd Characteristic

نویسنده

  • Reza Rezaeian Farashahi
چکیده

We propose two simple and efficient deterministic extractors for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H defined over Fq, for some odd q. Our first extractor, SEJ, called sum extractor, for a given point D on J(Fq), outputs the sum of abscissas of rational points on H in the support of D, considering D as a reduced divisor. Similarly the second extractor, PEJ, called product extractor, for a given point D on the J(Fq), outputs the product of abscissas of rational points in the support of D. Provided that the point D is chosen uniformly at random in J(Fq), the element extracted from the point D is indistinguishable from a uniformly random variable in Fq. Thanks to the Kummer surface K, that is associated to the Jacobian of H over Fq, we propose the sum and product extractors, SEK and PEK, for K(Fq). These extractors are the modified versions of the extractors SEJ and PEJ. Provided a point K is chosen uniformly at random in K, the element extracted from the point K is statistically close to a uniformly random variable in Fq.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting a uniform random bit-string over Jacobian of Hyperelliptic curves of Genus 2

Abstract. Here, we proposed an improved version of the deterministic random extractors SEJ and PEJ proposed by R. R. Farashahi in [5] in 2009. By using the Mumford’s representation of a reduced divisor D of the Jacobian J(Fq) of a hyperelliptic curve H of genus 2 with odd characteristic, we extract a perfectly random bit string of the sum of abscissas of rational points on H in the support of D...

متن کامل

Fast Arithmetic In Jacobian Of Hyperelliptic Curves Of Genus 2 Over GF(p)

In this paper, we suggest a new fast transformation for a divisor addition for hyperelliptic curves. The transformation targets the Jacobian of genus-2 curves over odd characteristic fields in projective representation. Compared to previously published results, the modification reduces the computational complexity and makes hyperelliptic curves more attractive for applications.

متن کامل

Co-Z Divisor Addition Formulae in Jacobian of Genus 2 Hyperelliptic Curves over Prime Fields

in this paper we proposed a new approach to divisor scalar multiplication in Jacobian of genus 2 hyperelliptic curves over fields with odd characteristic, without field inversion. It is based on improved addition formulae of the weight 2 divisors in projective divisor representation in most frequent case that suit very well to scalar multiplication algorithms based on Euclidean addition chains....

متن کامل

Fast explicit formulae for genus 2 hyperelliptic curves using projective coordinates (Updated)

This contribution proposes a modification of method of divisors group operation in the Jacobian of hyperelliptic curve over even and odd characteristic fields in projective coordinate. The hyperelliptic curve cryptosystem (HECC), enhances cryptographic security efficiency in e.g. information and telecommunications systems (ITS). Index Terms – hyperelliptic curves, explicit formulae.

متن کامل

Correspondences on Hyperelliptic Curves and Applications to the Discrete Logarithm

The discrete logarithm is an important crypto primitive for public key cryptography. The main source for suitable groups are divisor class groups of carefully chosen curves over finite fields. Because of index-calculus algorithms one has to avoid curves of genus ≥ 4 and non-hyperelliptic curves of genus 3. An important observation of Smith [S] is that for “many” hyperelliptic curves of genus 3 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007